Lung Segmentation Pipeline for CT Images

Leo Ramos, Israel Pineda

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva


Segmentation is one of the fundamental tasks in biomedical image processing. Adequate image segmentation and computer-aided diagnosis systems are excellent allies for healthcare professionals. There are multiple methods for image segmentation using image processing techniques that are still being used and developed. These have advantages over machine learning models and deliver reliable and fast results as training data for their operation do not limit them. This work proposes a 3-step semi-automatic pipeline for lung computed tomography image segmentation. It starts with preprocessing, in which the input image is enhanced; then, the image is segmented using the region growing technique, and finally, the segmentation mask is enhanced by applying a hole-filling process. The experimental results of the pipeline provided a Dice Coefficient of 0.9633 and an Intersection over Union of 0.9341 on average.

Idioma originalInglés
Título de la publicación alojada6th IEEE Ecuador Technical Chapters Meeting, ETCM 2022
EditoresDavid Rivas Lalaleo, Monica Karel Huerta
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665487443
EstadoPublicada - 2022
Evento6th IEEE Ecuador Technical Chapters Meeting, ETCM 2022 - Quito, Ecuador
Duración: 11 oct. 202214 oct. 2022

Serie de la publicación

Nombre6th IEEE Ecuador Technical Chapters Meeting, ETCM 2022


Conferencia6th IEEE Ecuador Technical Chapters Meeting, ETCM 2022


Profundice en los temas de investigación de 'Lung Segmentation Pipeline for CT Images'. En conjunto forman una huella única.

Citar esto