Machine Learning Applied to Last Mile Operations: Applying Machine Learning Models for Stops Classification in Urban Logistics

Bernardo Puente-Mejia, Carlos Suárez-Núñez, David Calahorrano, Martin Gavilanes, Daniel Masaquiza

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This study analyzes urban freight GPS data to achieve more efficient public policies and better last-mile operations planning. The main objective is to obtain the time stops of each urban freight vehicle and classify the stop as traffic, delivery, or rest. After classifying each stop using data mining algorithms and applying machine learning models such as K-Means and HDBSCAN, the study demonstrates that it is possible to apply machine learning models capable of grouping GPS stops by similar features. The clusters obtained are relevant inputs to future research and potential applications, such as in public policy decision making or routing optimization allowing private and public entities to optimize urban logistics and last-mile operations.

Idioma originalInglés
Título de la publicación alojadaProduction and Operations Management - POMS 2021
EditoresJorge Vargas Florez, Irineu de Brito Junior, Adriana Leiras, Sandro Alberto Paz Collado, Miguel Domingo González Alvarez, Carlos Alberto González-Calderón, Sebastian Villa Betancur, Michelle Rodríguez, Diana Ramirez-Rios
EditorialSpringer
Páginas501-512
Número de páginas12
ISBN (versión impresa)9783031068614
DOI
EstadoPublicada - 2022
EventoInternational Conference on Production and Operations Management, POMS 2021 - Virtual, Online
Duración: 2 dic. 20214 dic. 2021

Serie de la publicación

NombreSpringer Proceedings in Mathematics and Statistics
Volumen391
ISSN (versión impresa)2194-1009
ISSN (versión digital)2194-1017

Conferencia

ConferenciaInternational Conference on Production and Operations Management, POMS 2021
CiudadVirtual, Online
Período2/12/214/12/21

Huella

Profundice en los temas de investigación de 'Machine Learning Applied to Last Mile Operations: Applying Machine Learning Models for Stops Classification in Urban Logistics'. En conjunto forman una huella única.

Citar esto