Machine Learning Techniques Applied to Intrusion Detection Systems

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

As cyber threats continue to evolve, the necessity of Intrusion Detection Systems (IDS) to protect sensitive information has become increasingly apparent. To address the limitations of conventional signature-based IDS, machine learning-based approaches have been proposed. However, the dearth of up-to-date network datasets impedes the advancement of these innovative methods. Furthermore, robust and reproducible results are required to ensure that the performance of ML models is not merely a product of randomness but a reflection of genuine and reliable capabilities. In this context, this paper presents a comprehensive evaluation of standalone and hybrid machine learning algorithms aimed at improving the differentiation between normal and malicious traffic. The hybrid model combines rule-based filtering with machine learning-based evaluation. A set of predefined rules is first applied to filter the dataset, and then the ML algorithms focus on the most relevant data, thus improving the efficiency in detecting previously unseen threats and reducing computational complexity. This approach is designed to improve detection accuracy while maintaining a low false positive rate, addressing both precision and operational efficiency in real-world scenarios.

Idioma originalInglés
Título de la publicación alojadaETCM 2024 - 8th Ecuador Technical Chapters Meeting
EditoresDavid Rivas-Lalaleo, Soraya Lucia Sinche Maita
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350391589
DOI
EstadoPublicada - 2024
Evento8th IEEE Ecuador Technical Chapters Meeting, ETCM 2024 - Cuenca, Ecuador
Duración: 15 oct. 202418 oct. 2024

Serie de la publicación

NombreETCM 2024 - 8th Ecuador Technical Chapters Meeting

Conferencia

Conferencia8th IEEE Ecuador Technical Chapters Meeting, ETCM 2024
País/TerritorioEcuador
CiudadCuenca
Período15/10/2418/10/24

Huella

Profundice en los temas de investigación de 'Machine Learning Techniques Applied to Intrusion Detection Systems'. En conjunto forman una huella única.

Citar esto