Minimal doubly resolving sets of necklace graph

Ali Ahmad, Martin Bača, Saba Sultan

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

14 Citas (Scopus)

Resumen

Consider a simple connected undirected graph G = (V;E), where V represents the vertex set and E represents the edge set, respectively. A subset D of V is called doubly resolving set if for every two vertices x; y of G, there are two vertices u; v ∈ D such that d(u; x) - d(u; y) ≠= d(v; x) - d(v; y). A doubly resolving set with minimum cardinality is called minimal doubly resolving set. This minimum cardinality is denoted by (G). In this paper, we find the minimal doubly resolving set for necklace graph Nen, n ≥ 2. Also, we prove that (Nen) = 3 for n ≥ 2.

Idioma originalInglés
Páginas (desde-hasta)123-129
Número de páginas7
PublicaciónMathematical Reports
Volumen20
N.º2
EstadoPublicada - 2018
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Minimal doubly resolving sets of necklace graph'. En conjunto forman una huella única.

Citar esto