Minimal geometric deformation in a Reissner–Nordström background

Ángel Rincón, Luciano Gabbanelli, Ernesto Contreras, Francisco Tello-Ortiz

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

63 Citas (Scopus)


This article is devoted to the study of new exact analytical solutions in the background of Reissner–Nordström space-time by using gravitational decoupling via minimal geometric deformation approach. To do so, we impose the most general equation of state, relating the components of the θ-sector in order to obtain the new material contributions and the decoupler function f(r). Besides, we obtain the bounds on the free parameters of the extended solution to avoid new singularities. Furthermore, we show the finitude of all thermodynamic parameters of the solution such as the effective density ρ~ , radial p~ r and tangential p~ t pressure for different values of parameter α and the total electric charge Q. Finally, the behavior of some scalar invariants, namely the Ricci R and Kretshmann Rμ ν ω ϵRμ ν ω ϵ scalars are analyzed. It is also remarkable that, after an appropriate limit, the deformed Schwarzschild black hole solution always can be recovered.

Idioma originalInglés
Número de artículo873
PublicaciónEuropean Physical Journal C
EstadoPublicada - 1 oct. 2019
Publicado de forma externa


Profundice en los temas de investigación de 'Minimal geometric deformation in a Reissner–Nordström background'. En conjunto forman una huella única.

Citar esto