TY - JOUR
T1 - Modeling PM2.5 Levels Due to Combustion Activities and Fireworks in Quito (Ecuador) for Forecasting Using WRF-Chem
AU - Parra, Rene
N1 - Publisher Copyright:
© 2025 by the author.
PY - 2025/5
Y1 - 2025/5
N2 - PM2.5 levels increase in cities during the first hours of the year due to combustion activities and the use of fireworks. In Quito (2800 masl), the capital of Ecuador, air quality records at the beginning of 2020 to 2025 (6 years) ranged between 13.4 and 217.8 µg m−3 (maximum mean levels for 24 h), most of them being higher than 15.0 µg m−3, the current recommended concentration by the World Health Organization (WHO), highlighting the need to decrease these emissions and promote actions to reduce the exposure to these extreme events. Air pollution forecasting as a preventive warning system could help achieve this objective. Therefore, the primary aim of this research was to analyze the variation in PM2.5 levels in this city during the initial hours of the year to define, through numerical experiments, the spatiotemporal configuration of PM2.5 emissions to reproduce the observed PM2.5 levels and obtain insights to build an emission-based forecasting tool. For this purpose, we modeled atmospheric variables and the PM2.5 levels using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Consistent with the behavior suggested by records of associated meteorological variables, the modeled planetary boundary layer height (PBLH) was generally lower in the city’s south compared with the center and the north. The records and modeled results indicated that in the south, the higher PM2.5 levels were produced by higher emissions and lower values of the PBLH compared with the center and north, highlighting the importance of reducing the PM2.5 emissions. The emission maps used for modeling the dispersion at the beginning of 2024 and 2025 are proposed as inputs for the future forecasting of the PM2.5 levels at the start of the year, as preventive information for the public, to discourage, in advance, both combustion activities and the use of fireworks and to take action to avoid exposure.
AB - PM2.5 levels increase in cities during the first hours of the year due to combustion activities and the use of fireworks. In Quito (2800 masl), the capital of Ecuador, air quality records at the beginning of 2020 to 2025 (6 years) ranged between 13.4 and 217.8 µg m−3 (maximum mean levels for 24 h), most of them being higher than 15.0 µg m−3, the current recommended concentration by the World Health Organization (WHO), highlighting the need to decrease these emissions and promote actions to reduce the exposure to these extreme events. Air pollution forecasting as a preventive warning system could help achieve this objective. Therefore, the primary aim of this research was to analyze the variation in PM2.5 levels in this city during the initial hours of the year to define, through numerical experiments, the spatiotemporal configuration of PM2.5 emissions to reproduce the observed PM2.5 levels and obtain insights to build an emission-based forecasting tool. For this purpose, we modeled atmospheric variables and the PM2.5 levels using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Consistent with the behavior suggested by records of associated meteorological variables, the modeled planetary boundary layer height (PBLH) was generally lower in the city’s south compared with the center and the north. The records and modeled results indicated that in the south, the higher PM2.5 levels were produced by higher emissions and lower values of the PBLH compared with the center and north, highlighting the importance of reducing the PM2.5 emissions. The emission maps used for modeling the dispersion at the beginning of 2024 and 2025 are proposed as inputs for the future forecasting of the PM2.5 levels at the start of the year, as preventive information for the public, to discourage, in advance, both combustion activities and the use of fireworks and to take action to avoid exposure.
KW - air pollution
KW - Andean region
KW - fireworks
KW - PBLH
UR - http://www.scopus.com/inward/record.url?scp=105006778696&partnerID=8YFLogxK
U2 - 10.3390/atmos16050495
DO - 10.3390/atmos16050495
M3 - Artículo
AN - SCOPUS:105006778696
SN - 2073-4433
VL - 16
JO - Atmosphere
JF - Atmosphere
IS - 5
M1 - 495
ER -