Modular Version of Edge Irregularity Strength for Fan and Wheel Graphs

Debi Oktia Haryeni, Zata Yumni Awanis, Martin Bača, Andrea Semaničová-Feňovčíková

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

A k-labeling from the vertex set of a simple graph (Formula presented.) to a set of integers (Formula presented.) is defined to be a modular edge irregular if, for every couple of distinct edges, their modular edge weights are distinct. The modular edge weight is the remainder of the division of the sum of end vertex labels by modulo (Formula presented.). The modular edge irregularity strength of a graph is known as the maximal vertex label k, minimized over all modular edge irregular k-labelings of the graph. In this paper we describe labeling schemes with symmetrical distribution of even and odd edge weights and investigate the existence of (modular) edge irregular labelings of joins of paths and cycles with isolated vertices. We estimate the bounds of the (modular) edge irregularity strength for the join graphs (Formula presented.) and (Formula presented.) and determine the corresponding exact value of the (modular) edge irregularity strength for some fan graphs and wheel graphs in order to prove the sharpness of the presented bounds.

Idioma originalInglés
Número de artículo2671
PublicaciónSymmetry
Volumen14
N.º12
DOI
EstadoPublicada - dic. 2022
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Modular Version of Edge Irregularity Strength for Fan and Wheel Graphs'. En conjunto forman una huella única.

Citar esto