TY - JOUR
T1 - Molten carbonate fuel cells
T2 - a technological perspective and review
AU - Contreras, Ricardo R.
AU - Almarza, Jorge
AU - Rincón, Luis
N1 - Publisher Copyright:
© 2021 Taylor & Francis Group, LLC.
PY - 2021
Y1 - 2021
N2 - Molten carbonate fuel cells (MCFCs) are high-temperature fuel cells that operate with a variety of fuels with high efficiency that, in addition to power generation, can be used for capturing and concentrating CO2. In the present review, the advances in the last 20 years of the key components of MCFCs are discussed: anode, cathode, support electrolytes, and electrolyte composition. The current state of the technology is such that it is routinely used for power generation in stationary power plant systems. The success of the technology is due to the high temperature of operation. The operating temperature is so high that it allows hydrocarbon fuel to be used without any external reforming system. MCFCs have several other important advantageous characteristics: can attain high-energy efficiencies, almost 60% in some cases, also when applied in a cogeneration context, and overall fuel efficiencies, accounting for electrical and thermal products, can exceed 80%. Despite significant progress in the past, some issues like component range of operating temperatures and power density needs to be overcome to meet the full expectations. Thus, a significant opportunity exists for new materials in this area. Some alternative materials and strategies to mitigate the issues are discussed.
AB - Molten carbonate fuel cells (MCFCs) are high-temperature fuel cells that operate with a variety of fuels with high efficiency that, in addition to power generation, can be used for capturing and concentrating CO2. In the present review, the advances in the last 20 years of the key components of MCFCs are discussed: anode, cathode, support electrolytes, and electrolyte composition. The current state of the technology is such that it is routinely used for power generation in stationary power plant systems. The success of the technology is due to the high temperature of operation. The operating temperature is so high that it allows hydrocarbon fuel to be used without any external reforming system. MCFCs have several other important advantageous characteristics: can attain high-energy efficiencies, almost 60% in some cases, also when applied in a cogeneration context, and overall fuel efficiencies, accounting for electrical and thermal products, can exceed 80%. Despite significant progress in the past, some issues like component range of operating temperatures and power density needs to be overcome to meet the full expectations. Thus, a significant opportunity exists for new materials in this area. Some alternative materials and strategies to mitigate the issues are discussed.
KW - Fuel cells
KW - MCFC
KW - green chemistry
KW - molten carbonate fuel cell
KW - sodium carbonate
UR - http://www.scopus.com/inward/record.url?scp=85121345523&partnerID=8YFLogxK
U2 - 10.1080/15567036.2021.2013346
DO - 10.1080/15567036.2021.2013346
M3 - Artículo de revisión
AN - SCOPUS:85121345523
SN - 1556-7036
JO - Energy Sources, Part A: Recovery, Utilization and Environmental Effects
JF - Energy Sources, Part A: Recovery, Utilization and Environmental Effects
ER -