Multi Mq-monogenic function in different dimension

Eusebio Ariza, Antonio Di Teodoro

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

A metamonogenic of first-order function or simply metamonogenic function is a function that satisfies the differential equation (D - λ)u = 0, where D is the Cauchy-Riemann operator and λ can be real or Cliffordvalued constant (see [4]). Using this definition we can say that a multimetamonogenic function u is separately metamonogenic in several variables x(j), j = 1, ⋯, n with n ≥ 2, if x(j) = (x(j)1, ⋯, x(j)mj) runs in the Euclidean space ℝmj and (Dj - λ)u = 0, for each j = 1, ⋯, n, where Dj is the corresponding Cauchy-Riemann operator in the space ℝmj. Using the theory of algebras of Clifford type depending on parameters (see [11, 12]), the present proposal discusses the properties of u in case the dimensions mj are different from each other for multi Mq-monogenic functions, following the ideas exhibited in [9, 10].

Idioma originalInglés
Título de la publicación alojadaHypercomplex Analysis
Subtítulo de la publicación alojadaNew Perspectives and Applications
EditoresSwanhild Bernstein, Uwe Kähler, Irene Sabadini, Frank Sommen
EditorialSpringer International Publishing
Páginas61-73
Número de páginas13
ISBN (versión impresa)9783319087702
DOI
EstadoPublicada - 2014
Publicado de forma externa
Evento9th International ISAAC Congress on International Society for Analysis, its Applications, and Computations, 2013 - Krakow, Polonia
Duración: 5 ago. 20139 ago. 2013

Serie de la publicación

NombreTrends in Mathematics
Volumen65
ISSN (versión impresa)2297-0215
ISSN (versión digital)2297-024X

Conferencia

Conferencia9th International ISAAC Congress on International Society for Analysis, its Applications, and Computations, 2013
País/TerritorioPolonia
CiudadKrakow
Período5/08/139/08/13

Huella

Profundice en los temas de investigación de 'Multi Mq-monogenic function in different dimension'. En conjunto forman una huella única.

Citar esto