TY - JOUR
T1 - Multi-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteins
AU - Casañola-Martin, Gerardo M.
AU - Le-Thi-Thu, Huong
AU - Pérez-Giménez, Facundo
AU - Marrero-Ponce, Yovani
AU - Merino-Sanjuán, Matilde
AU - Abad, Concepción
AU - González-Díaz, Humberto
N1 - Publisher Copyright:
© 2016 Bentham Science Publishers.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - The ubiquitin-proteasome pathway (UPP) is the primary degradation system of short-lived regulatory proteins. Cellular processes such as the cell cycle, signal transduction, gene expression, DNA repair and apoptosis are regulated by this UPP and dysfunctions in this system have important implications in the development of cancer, neurodegenerative, cardiac and other human pathologies. UPP seems also to be very important in the function of eukaryote cells of the human parasites like Plasmodium falciparum, the causal agent of the neglected disease Malaria. Hence, the UPP could be considered as an attractive target for the development of compounds with Anti-Malarial or Anti-cancer properties. Recent online databases like ChEMBL contains a larger quantity of information in terms of pharmacological assay protocols and compounds tested as UPP inhibitors under many different conditions. This large amount of data give new openings for the computer-aided identification of UPP inhibitors, but the intrinsic data diversity is an obstacle for the development of successful classifiers. To solve this problem here we used the Bob-Jenkins moving average operators and the atom-based quadratic molecular indices calculated with the software TOMOCOMD-CARDD (TC) to develop a quantitative model for the prediction of the multiple outputs in this complex dataset. Our multi-target model can predict results for drugs against 22 molecular or cellular targets of different organisms with accuracies above 70% in both training and validation sets.
AB - The ubiquitin-proteasome pathway (UPP) is the primary degradation system of short-lived regulatory proteins. Cellular processes such as the cell cycle, signal transduction, gene expression, DNA repair and apoptosis are regulated by this UPP and dysfunctions in this system have important implications in the development of cancer, neurodegenerative, cardiac and other human pathologies. UPP seems also to be very important in the function of eukaryote cells of the human parasites like Plasmodium falciparum, the causal agent of the neglected disease Malaria. Hence, the UPP could be considered as an attractive target for the development of compounds with Anti-Malarial or Anti-cancer properties. Recent online databases like ChEMBL contains a larger quantity of information in terms of pharmacological assay protocols and compounds tested as UPP inhibitors under many different conditions. This large amount of data give new openings for the computer-aided identification of UPP inhibitors, but the intrinsic data diversity is an obstacle for the development of successful classifiers. To solve this problem here we used the Bob-Jenkins moving average operators and the atom-based quadratic molecular indices calculated with the software TOMOCOMD-CARDD (TC) to develop a quantitative model for the prediction of the multiple outputs in this complex dataset. Our multi-target model can predict results for drugs against 22 molecular or cellular targets of different organisms with accuracies above 70% in both training and validation sets.
KW - Atom-based quadratic indices
KW - CHEMBL
KW - Cancer
KW - Malaria
KW - Moving average
KW - Multi-scale and multi-output model
KW - Multi-target
KW - QSAR
KW - UPP inhibitor
UR - http://www.scopus.com/inward/record.url?scp=84961704457&partnerID=8YFLogxK
U2 - 10.2174/1389203717999160226173500
DO - 10.2174/1389203717999160226173500
M3 - Artículo
C2 - 26427384
AN - SCOPUS:84961704457
SN - 1389-2037
VL - 17
SP - 220
EP - 227
JO - Current Protein and Peptide Science
JF - Current Protein and Peptide Science
IS - 3
ER -