TY - JOUR

T1 - Neural network-based formula for shear capacity prediction of one-way slabs under concentrated loads

AU - Abambres, Miguel

AU - Lantsoght, Eva O.L.

N1 - Publisher Copyright:
© 2020 Elsevier Ltd

PY - 2020/5/15

Y1 - 2020/5/15

N2 - According to the current codes and guidelines, shear assessment of existing reinforced concrete slab bridges sometimes leads to the conclusion that the bridge under consideration has insufficient shear capacity. The calculated shear capacity, however, does not consider the transverse redistribution capacity of slabs, and thus leads to overly conservative values. While mechanics-based models have attempted to describe the problem of one-way shear in concrete slabs under concentrated loads, this problem is still not fully understood. Therefore, this paper proposes an artificial neural network (ANN)-based formula to come up with estimates of the shear capacity of one-way reinforced concrete slabs under a concentrated load that are as good as possible based on 287 test results obtained from the literature. The methods used for this purpose are: (i) the development of the database with experimental results from the literature, and (ii) the development of the ANN-based matrix formulation. For the latter purpose, many thousands of ANN models were generated, based on 475 distinct combinations of fifteen typical ANN features. The proposed “optimal” model yields maximum and mean relative errors of 0.0% for the 287 datapoints. Moreover, it was illustrated to clearly outperform (mean Vtest / VANN = 1.00) the Eurocode 2 provisions (mean VE,EC / VR,c = 1.59) for that dataset. A step-by-step assessment scheme for reinforced concrete slab bridges by means of the ANN-based model is also proposed in this work, which results in an improvement of the current assessment procedures.

AB - According to the current codes and guidelines, shear assessment of existing reinforced concrete slab bridges sometimes leads to the conclusion that the bridge under consideration has insufficient shear capacity. The calculated shear capacity, however, does not consider the transverse redistribution capacity of slabs, and thus leads to overly conservative values. While mechanics-based models have attempted to describe the problem of one-way shear in concrete slabs under concentrated loads, this problem is still not fully understood. Therefore, this paper proposes an artificial neural network (ANN)-based formula to come up with estimates of the shear capacity of one-way reinforced concrete slabs under a concentrated load that are as good as possible based on 287 test results obtained from the literature. The methods used for this purpose are: (i) the development of the database with experimental results from the literature, and (ii) the development of the ANN-based matrix formulation. For the latter purpose, many thousands of ANN models were generated, based on 475 distinct combinations of fifteen typical ANN features. The proposed “optimal” model yields maximum and mean relative errors of 0.0% for the 287 datapoints. Moreover, it was illustrated to clearly outperform (mean Vtest / VANN = 1.00) the Eurocode 2 provisions (mean VE,EC / VR,c = 1.59) for that dataset. A step-by-step assessment scheme for reinforced concrete slab bridges by means of the ANN-based model is also proposed in this work, which results in an improvement of the current assessment procedures.

KW - Artificial neural networks

KW - Bridges

KW - Design formula

KW - One-way slabs

KW - Reinforced concrete

KW - Shear capacity

UR - http://www.scopus.com/inward/record.url?scp=85082119185&partnerID=8YFLogxK

U2 - 10.1016/j.engstruct.2020.110501

DO - 10.1016/j.engstruct.2020.110501

M3 - Artículo

AN - SCOPUS:85082119185

SN - 0141-0296

VL - 211

JO - Engineering Structures

JF - Engineering Structures

M1 - 110501

ER -