@inproceedings{8930f07973e9488b8e865e230dba2b0f,
title = "Nonlinear finite element analysis of beam experiments for stop criteria",
abstract = "Proof load testing is used to assess the structural capacity of existing bridges. Stop criteria, based on measurements taken during proof load tests, determine if a test should be stopped before reaching the target proof load in order to maintain structural integrity. A nonlinear finite element model is proposed to investigate stop criteria. A reinforced concrete beam with plain reinforcement is modeled. The goal is to develop a reliable finite element model with adequate material constitutive models to analyze available stop criteria from existing codes. The beam experiment is verified in terms of strains. Stop criteria from ACI 437.2M-13 and the German guideline are analyzed for the beam model. The presented analysis shows that nonlinear finite element models can be used for the evaluation of stop criteria for proof load testing to limit the required number of laboratory tests.",
author = "Paredes, {J. E.} and Lantsoght, {E. O.L.}",
note = "Publisher Copyright: {\textcopyright} 2019 Taylor & Francis Group, London.; 6th International Symposium on Life-Cycle Civil Engineering, IALCCE 2018 ; Conference date: 28-10-2018 Through 31-10-2018",
year = "2019",
language = "Ingl{\'e}s",
isbn = "9781138626331",
series = "Life-Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision - Proceedings of the 6th International Symposium on Life-Cycle Civil Engineering, IALCCE 2018",
publisher = "CRC Press/Balkema",
pages = "115--122",
editor = "Frangopol, {Dan M.} and Robby Caspeele and Luc Taerwe",
booktitle = "Life-Cycle Analysis and Assessment in Civil Engineering",
}