On (a, d)-antimagic prisms

M. Bača, I. Holländer

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

23 Citas (Scopus)

Resumen

We deal with (a, d)-antimagic labelings of the prisms. A connected graph G = (V, E) is said to be (a, d)-antimagic if there exist positive integers a, d and a bijection f: E → {1, 2, . . . , |E|} such that the induced mapping gf: V → N, defined by gf(v) = Σ {f(u, v): (u, v) ∈ E(G)}, is injective and gf(V) = {a, a + d, . . . , a + (|V| - 1)d}. We characterize (a, d)-antimagic prisms with even cycles and we conjecture that prisms with odd cycles of length n, n ≥ 7, are (n+7/2, 4)-antimagic.

Idioma originalInglés
Páginas (desde-hasta)297-306
Número de páginas10
PublicaciónArs Combinatoria
Volumen48
EstadoPublicada - abr. 1998
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'On (a, d)-antimagic prisms'. En conjunto forman una huella única.

Citar esto