On connection between α-labelings and edge-antimagic labelings of disconnected graphs

Martin Bača, Marcela Lascsáková, Andrea Semaničova

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

A labeling of a graph is any map that carries some set of graph elements to numbers (usually to the positive integers). An (a,d)edge antanagic total labeling on a graph with p vertices and q edges is defined as a one-to-one map taking the vertices and edges onto the integers 1,2,...,p + q with the property that the sums of the labels on the edges and the labels of their endpoints form an arithmetic sequence starting from a and having a common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. We use the connection between α-labelings and edge-antimagic labelings for determining a super (a,d)-edge-antimagic total labelings of disconnected graphs.

Idioma originalInglés
Páginas (desde-hasta)321-326
Número de páginas6
PublicaciónArs Combinatoria
Volumen106
EstadoPublicada - jul. 2012
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'On connection between α-labelings and edge-antimagic labelings of disconnected graphs'. En conjunto forman una huella única.

Citar esto