On cycle-irregularity strength of ladders and fan graphs

Faraha Ashraf, Martin Bača, Andrea Semanicova-Fenovcikova, Suhadi Wido Saputro

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

A simple graph G = (V (G);E(G) admits an H-covering if every edge in E(G) belongs to at least one subgraph of G isomorphic to a given graph H. A total k-labeling ϕ: V (G) ∪ E(G) → [1, 2,..., k] is called to be an H-irregular total k-labeling of the graphG admitting an H-covering if for every two different subgraphs H' and H'' isomorphic to H there is wtϕ(H') ≠ wtϕ(H''), where. The total H-irregularity strength of a graph G, denoted by ths(G, H), is the smallest integer k such that G has an H-irregular total k-labeling. In this paper we determine the exact value of the cycle-irregularity strength of ladders and fan graphs.

Idioma originalInglés
Páginas (desde-hasta)181-194
Número de páginas14
PublicaciónElectronic Journal of Graph Theory and Applications
Volumen8
N.º1
DOI
EstadoPublicada - 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'On cycle-irregularity strength of ladders and fan graphs'. En conjunto forman una huella única.

Citar esto