On (F,H)-sim-magic labelings of graphs

Yeva Fadhilah Ashari, A. N.M. Salman, Rinovia Simanjuntak, Andrea Semaničová-Feňovčíková, Martin Bača

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

A simple graph G(V,E) admits an H-covering if every edge in G belongs to a subgraph of G isomorphic to H. In this case, G is called H-magic if there exists a bijective function f: V ∪ E → {1, 2,…, |V | + |E|}, such that for every subgraph H′ of G isomorphic to H, (Formula Presented) is constant. Moreover, G is called H-supermagic if f: V (G) → {1, 2,…, |V |}. This paper generalizes the previous labeling by introducing the (F,H)-sim-(super) magic labeling. A graph admitting an F-covering and an H-covering is called (F,H)-sim-(super) magic if there exists a function f that is F-(super)magic and H-(super)magic at the same time. We consider such labelings for two product graphs: the join product and the Cartesian product. In particular, we establish a sufficient condition for the join product G+H to be (K2+H, 2K2+H)- sim-supermagic and show that the Cartesian product G × K2 is (C4,H)-sim-supermagic, for H isomorphic to a ladder or an even cycle.

Idioma originalInglés
Páginas (desde-hasta)49-64
Número de páginas16
PublicaciónElectronic Journal of Graph Theory and Applications
Volumen11
N.º1
DOI
EstadoPublicada - 8 abr. 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'On (F,H)-sim-magic labelings of graphs'. En conjunto forman una huella única.

Citar esto