On fractional metric dimension of comb product graphs

Suhadi Wido Saputro, Andrea Semaničová-Feňovčíková, Martin Bača, Marcela Lascsáková

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

19 Citas (Scopus)

Resumen

A vertex z in a connected graph G resolves two vertices u and v in G if dG(u, z) = dG(v, z). A set of vertices RG(u, v} is a set of all resolving vertices of u and v in G. For every two distinct vertices u and v in G, a resolving function f of G is a real function f: V (G) → [0; 1] such that f(RG(u, v)) ≥ 1. The minimum value of f(V (G)) from all resolving functions f of G is called the fractional metric dimension of G. In this paper, we consider a graph which is obtained by the comb product between two connected graphs G and H, denoted by Go H. For any connected graphs G, we determine the fractional metric dimension of Go H where H is a connected graph having a stem or a major vertex.

Idioma originalInglés
Páginas (desde-hasta)150-158
Número de páginas9
PublicaciónStatistics, Optimization and Information Computing
Volumen6
N.º1
DOI
EstadoPublicada - 2018
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'On fractional metric dimension of comb product graphs'. En conjunto forman una huella única.

Citar esto