On H-antimagic decomposition of toroidal grids and triangulations

Hendy, A. N. Mudholifah, K. A. Sugeng, Martin Bača, Andrea Semaničová-Feňovčíková

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Let (Formula presented.) be a finite simple graph with p vertices and q edges. A decomposition of a graph G into isomorphic copies of a graph H is called (a, d)-H-antimagic if there is a bijection (Formula presented.) such that for all subgraphs (Formula presented.) isomorphic to H in the decomposition of G, the sum of the labels of all the edges and vertices belonging to (Formula presented.) constitutes an arithmetic progression with the initial term a and the common difference d. When (Formula presented.) then G is said to be super (a, d)-H-antimagic and if d = 0 then G is called H-supermagic. In the paper we examine the existence of such labelings for toroidal grids and toroidal triangulations.

Idioma originalInglés
Páginas (desde-hasta)761-770
Número de páginas10
PublicaciónAKCE International Journal of Graphs and Combinatorics
Volumen17
N.º3
DOI
EstadoPublicada - 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'On H-antimagic decomposition of toroidal grids and triangulations'. En conjunto forman una huella única.

Citar esto