On super (a, 1)-edge-antimagic total labelings of regular graphs

Martin Bača, Petr Kovář, Andrea Semaničová-Feňovčíková, Muhammad Kashif Shafiq

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

18 Citas (Scopus)

Resumen

A labeling of a graph is a mapping that carries some set of graph elements into numbers (usually positive integers). An (a, d)-edge-antimagic total labeling of a graph with p vertices and q edges is a one-to-one mapping that takes the vertices and edges onto the integers 1, 2 ..., p + q, so that the sum of the labels on the edges and the labels of their end vertices forms an arithmetic progression starting at a and having difference d. Such a labeling is called super if the p smallest possible labels appear at the vertices. In this paper we prove that every even regular graph and every odd regular graph with a 1-factor are super (a, 1)-edge-antimagic total. We also introduce some constructions of non-regular super (a, 1)-edge-antimagic total graphs.

Idioma originalInglés
Páginas (desde-hasta)1408-1412
Número de páginas5
PublicaciónDiscrete Mathematics
Volumen310
N.º9
DOI
EstadoPublicada - 6 may. 2010
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'On super (a, 1)-edge-antimagic total labelings of regular graphs'. En conjunto forman una huella única.

Citar esto