On super (a, 2)-edge-antimagic total labeling of disconnected graphs

Martin Bača, Francese Antoni Muntaner-Batle, Andrea Semaničova-Fenovčiková, Muhammad Kashif Shafiq

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

9 Citas (Scopus)

Resumen

A labeling of a graph is a mapping that carries some set of graph elements into numbers (usually the positive integers). An (a, d)-edge-antimagic total labeling of a graph with p vertices and q edges is a one-to-one mapping that takes the vertices and edges onto the integers 1,2,. ,p + q, such that the sums of the label on the edges and the labels of their end points form an arithmetic sequence starting from a and having a common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. In this paper we study the super (a, 2)-edge-antimagic total la-beling8 of disconnected graphs. We also present some necessary conditions for the existence of (a, d)-edge-antimagic total labelings for d even.

Idioma originalInglés
Páginas (desde-hasta)129-137
Número de páginas9
PublicaciónArs Combinatoria
Volumen113
EstadoPublicada - ene. 2014
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'On super (a, 2)-edge-antimagic total labeling of disconnected graphs'. En conjunto forman una huella única.

Citar esto