On the Use of Active Contour Models for Breast Cancer Lesion Segmentation

Camila Zambrano, Alejandro Duque, Diego Benitez, Felipe Grijalva, Eduardo Alba-Cabrera, Miguel Coimbra, Noel Perez-Perez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Early detection and classification of mass lesion in mammograms constitute an essential step to decrease patient mortality caused by breast cancer, because it is possible to analyze the initial stages of cancer before it appears clinically. A well-performed segmentation task allows the lesion to be separated from the background to improve its shape-based classification. However, it is a challenging task because of its similarity to surrounding tissue. Therefore, we propose exploring two active contour models, Geodesic and Chan-Vese, to maximize the performance of mass segmentation in mammography images. Both models were optimized in terms of initialization radius and number of iterations used and validated on an experimental dataset containing 115 images with mass lesions. The best-selected Chan-Vese model, with a radius of 50 pixels and 436 iterations, outperformed the best Geodesic model, attaining a mean Dice score of 0.812 versus 0.558. This result highlighted the successful performance of the Chan-Vese model in segmenting mass lesions from different images. It also demonstrated the Geodesic model's tendency to get stuck in local minimums. The Median and CLAHE filters were crucial to improving the boundary quality of the mass lesion prior to the segmentation step. Also, the proposed method was able to successfully segment complex and irregular mass shapes, which is considered an essential result for cancer classification with respect to the degree of malignancy.

Idioma originalInglés
Título de la publicación alojadaChileCon 2023 - 2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350369533
DOI
EstadoPublicada - 2023
Evento2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, ChileCon 2023 - Hybrid, Valdivia, Chile
Duración: 5 dic. 20237 dic. 2023

Serie de la publicación

NombreProceedings - IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, ChileCon
ISSN (versión impresa)2832-1529
ISSN (versión digital)2832-1537

Conferencia

Conferencia2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, ChileCon 2023
País/TerritorioChile
CiudadHybrid, Valdivia
Período5/12/237/12/23

Huella

Profundice en los temas de investigación de 'On the Use of Active Contour Models for Breast Cancer Lesion Segmentation'. En conjunto forman una huella única.

Citar esto