On the Use of Convolutional Neural Network Architectures for Facial Emotion Recognition

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

This work compares face gesture recognition methods based on deep learning convolutional neural network and autoencoder architectures named DCNN1, DCNN2, DCNN3, DCNN4, and DCNN+Autoencoder, that maximize the classification performance on single and mixing databases. We validated the proposed architectures on four different databases: Jaffe, CK+, FACES, and the combination of them over a five-fold cross-validation strategy. The DCNN4 was the best model in the Jaffe and FACES databases, obtaining accuracy scores of 95 % and 97 %, respectively. The DCNN2 achieved the best accuracy performance of 94 % in the CK+ database. Finally, the DCNN+Autoencoder stands as the best model in the combination of all databases (Jaffe & CK+ & FACES), achieving an accuracy score of 92 %. Moreover, according to the cross-entropy loss function, the best model per database did not incur overfitting.

Idioma originalInglés
Título de la publicación alojadaApplications of Computational Intelligence - 4th IEEE Colombian Conference, ColCACI 2021, Revised Selected Papers
EditoresAlvaro David Orjuela-Cañón, Jesus A. Lopez, Julián David Arias-Londoño, Juan Carlos Figueroa-García
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas18-30
Número de páginas13
ISBN (versión impresa)9783030913076
DOI
EstadoPublicada - 2022
Evento4th IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2021 - Virtual, Online
Duración: 27 may. 202128 may. 2021

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1471 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia4th IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2021
CiudadVirtual, Online
Período27/05/2128/05/21

Huella

Profundice en los temas de investigación de 'On the Use of Convolutional Neural Network Architectures for Facial Emotion Recognition'. En conjunto forman una huella única.

Citar esto