On the Use of YOLO-NAS and YOLOv8 for the Detection of Sea Lions in the Galapagos Islands

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Sea lions (Zalophus Wollebaeki) are a protected species, and effective monitoring is crucial for habitat preservation and behavioral studies. However, manual sea lion counting is laborious and error-prone. In this paper, we explore the use of two standard convolutional neural network models (YOLO-NAS and YOLOv8) for sea lion detection as a preliminary step towards automating the counting process. For this purpose, a data set of images and videos of sea lions was collected in their natural environment in the Galapagos Islands. The results demonstrate that both models exhibit promising detection capabilities, successfully identifying almost all sea lions in the images. In particular, YOLOv8 shows to be more reliable in the detection of sea lions under challenging and complex conditions, while YOLO-NAS excels in the identification of a larger number of individuals, including those of a smaller size. These findings pave the way for future developments in automated sea lion counting tools, streamlining conservation efforts, and advancing our understanding of this protected species.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 25th Autumn Meeting on Power, Electronics and Computing, ROPEC 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350336887
DOI
EstadoPublicada - 2023
Evento25th Autumn Meeting on Power, Electronics and Computing, ROPEC 2023 - Ixtapa, Gro., México
Duración: 18 oct. 202320 oct. 2023

Serie de la publicación

NombreProceedings of the 25th Autumn Meeting on Power, Electronics and Computing, ROPEC 2023

Conferencia

Conferencia25th Autumn Meeting on Power, Electronics and Computing, ROPEC 2023
País/TerritorioMéxico
CiudadIxtapa, Gro.
Período18/10/2320/10/23

Huella

Profundice en los temas de investigación de 'On the Use of YOLO-NAS and YOLOv8 for the Detection of Sea Lions in the Galapagos Islands'. En conjunto forman una huella única.

Citar esto