On the Use of YOLOv8 for Detection and Classification of Mammals Species in Wildlife Environments in the Ecuadorian Amazon

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The preservation of global biodiversity has become a critical issue in recent decades, with significant increases in endangered species due to human activities. The use of Deep Learning models for the automation of animal monitoring plays a fundamental role in species conservation. This study aims to de-velop a robust classifier to detect six mammals of the Ecuadorian Amazon (Alouatta seniculus, Leopardus pardalis, Panthera onca, Puma concolor, Tayassu tajacu, and Tapirus terrestris) using the YOLOv8 computer vision model. A dataset of 11,708 images was collected from the iNaturalist repository, ensuring high-quality data through a rigorous cleaning and annotation process. To achieve a model that maximizes trade-offs between detection speed, accuracy, and computational burden, various versions of YOLOv8 were experimented with. The YOLOv8m model with data augmentation emerged as the best performer, with a 4.5% improvement in accuracy over other models.

Idioma originalInglés
Título de la publicación alojada2024 7th IEEE Biennial Congress of Argentina, ARGENCON 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350365931
DOI
EstadoPublicada - 2024
Evento7th IEEE Biennial Congress of Argentina, ARGENCON 2024 - San Nicolas de los Arroyos, Argentina
Duración: 18 sep. 202420 sep. 2024

Serie de la publicación

Nombre2024 7th IEEE Biennial Congress of Argentina, ARGENCON 2024

Conferencia

Conferencia7th IEEE Biennial Congress of Argentina, ARGENCON 2024
País/TerritorioArgentina
CiudadSan Nicolas de los Arroyos
Período18/09/2420/09/24

Huella

Profundice en los temas de investigación de 'On the Use of YOLOv8 for Detection and Classification of Mammals Species in Wildlife Environments in the Ecuadorian Amazon'. En conjunto forman una huella única.

Citar esto