On the Use of Deep Learning Models for Automatic Animal Classification of Native Species in the Amazon

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Camera trap image analysis, although critical for habitat and species conservation, is often a manual, time-consuming, and expensive task. Thus, automating this process would allow large-scale research on biodiversity hotspots of large conspicuous mammals and bird species. This paper explores the use of deep learning species-level object detection and classification models for this task, using two state-of-the-art architectures, YOLOv5 and Faster R-CNN, for two species: white-lipped peccary and collared peccary. The dataset contains 7,733 images obtained after data augmentation from the Tiputini Biodiversity Station. The models were trained in 70% of the dataset, validated in 20%, and tested in 10% of the available data. The Faster R-CNN model achieved an average mAP (Mean Average Precision) of 0.26 at a 0.5 Intersection Over Union (IoU) threshold and 0.114 at a 0.5 to 0.95 IoU threshold, which is comparable with the original results of Faster R-CNN on the MS COCO dataset. Whereas, YOLOv5 achieved an average mAP of 0.5525 at a 0.5 IoU threshold, while its average mAP at a 0.5 to 0.95 IoU threshold is 0.37997. Therefore, the YOLOv5 model was shown to be more robust, having lower losses and a higher overall mAP value than Faster-RCNN and YOLOv5 trained on the MS COCO dataset. This is one of the first steps towards developing an automated camera trap analysis tool, allowing a large-scale analysis of population and habitat trends to benefit their conservation. The results suggest that hyperparameter fine-tuning would improve our models and allow us to extend this tool to other native species.

Idioma originalInglés
Título de la publicación alojadaApplications of Computational Intelligence - 6th IEEE Colombian Conference, ColCACI 2023, Revised Selected Papers
EditoresAlvaro David Orjuela-Cañón, Jesus A Lopez, Julián David Arias-Londoño
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas84-103
Número de páginas20
ISBN (versión impresa)9783031484148
DOI
EstadoPublicada - 2024
Evento6th IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2023 - Bogota, Colombia
Duración: 26 jul. 202328 jul. 2023

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1865 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia6th IEEE Colombian Conference on Applications of Computational Intelligence, ColCACI 2023
País/TerritorioColombia
CiudadBogota
Período26/07/2328/07/23

Huella

Profundice en los temas de investigación de 'On the Use of Deep Learning Models for Automatic Animal Classification of Native Species in the Amazon'. En conjunto forman una huella única.

Citar esto