TY - JOUR
T1 - Optimization of microfibrillated cellulose isolation from cocoa pod husk via mild oxalic acid hydrolysis
T2 - A response surface methodology approach
AU - Zambrano-Mite, L. Fernando
AU - Villasana, Yanet
AU - Bejarano, M. Lorena
AU - Luciani, Christian
AU - Niebieskikwiat, Dario
AU - Álvarez, Willin
AU - Cueva, Dario F.
AU - Aguilera-Pesantes, Daniel
AU - Orejuela-Escobar, Lourdes M.
N1 - © 2023 Published by Elsevier Ltd.
PY - 2023/6
Y1 - 2023/6
N2 - Theobroma cacao L. species, cultivated worldwide for its valuable beans, generates up to 72% weight of the fruit as waste. The lack of reutilization technologies in the cocoa agroindustry has hindered the exploitation of valuable bio-components applicable to the generation of high value added bioproducts. One such bioproduct is microfibrillated cellulose (MFC), a biopolymer that stands out for its desirable mechanical properties and biocompatibility in biomedical, packing, 3D printing, and construction applications. In this study, we isolated microfibrillated cellulose (MFC) from cocoa pod husk (CPH) via oxalic acid hydrolysis combined with a steam explosion. MFC isolation started with the Solid/Liquid extraction via Soxhlet, followed by mild citric acid hydrolysis, diluted alkaline hydrolysis, and bleaching pre-treatments. A Response Surface Methodology (RSM) was used to optimize the hydrolysis reaction at levels between 110 and 125 °C, 30–90 min at 5–10% (w/v) oxalic acid concentration. The cellulose-rich fraction was characterized by Fourier-Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) analyses. Characterization analyses revealed a cellulose-rich polymer with fibers ranging from 6 to 10 μm, a maximum thermal degradation temperature of 350 °C, and a crystallinity index of 63.4% (peak height method) and 29.0% (amorphous subtraction method). The optimized hydrolysis conditions were 125 °C, 30 min, at 5% w/v oxalic acid: with a 75.7% yield. These results compare with MFC obtained through highly concentrated inorganic acid hydrolysis from different biomass sources. Thus, we show a reliable and greener alternative chemical treatment for the obtention of MFC.
AB - Theobroma cacao L. species, cultivated worldwide for its valuable beans, generates up to 72% weight of the fruit as waste. The lack of reutilization technologies in the cocoa agroindustry has hindered the exploitation of valuable bio-components applicable to the generation of high value added bioproducts. One such bioproduct is microfibrillated cellulose (MFC), a biopolymer that stands out for its desirable mechanical properties and biocompatibility in biomedical, packing, 3D printing, and construction applications. In this study, we isolated microfibrillated cellulose (MFC) from cocoa pod husk (CPH) via oxalic acid hydrolysis combined with a steam explosion. MFC isolation started with the Solid/Liquid extraction via Soxhlet, followed by mild citric acid hydrolysis, diluted alkaline hydrolysis, and bleaching pre-treatments. A Response Surface Methodology (RSM) was used to optimize the hydrolysis reaction at levels between 110 and 125 °C, 30–90 min at 5–10% (w/v) oxalic acid concentration. The cellulose-rich fraction was characterized by Fourier-Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) analyses. Characterization analyses revealed a cellulose-rich polymer with fibers ranging from 6 to 10 μm, a maximum thermal degradation temperature of 350 °C, and a crystallinity index of 63.4% (peak height method) and 29.0% (amorphous subtraction method). The optimized hydrolysis conditions were 125 °C, 30 min, at 5% w/v oxalic acid: with a 75.7% yield. These results compare with MFC obtained through highly concentrated inorganic acid hydrolysis from different biomass sources. Thus, we show a reliable and greener alternative chemical treatment for the obtention of MFC.
KW - Biomass valorization
KW - Cocoa pod husk
KW - Design of experiments
KW - Green hydrolysis
KW - Microfibrillated cellulose
UR - http://www.scopus.com/inward/record.url?scp=85162067462&partnerID=8YFLogxK
U2 - 10.1016/j.heliyon.2023.e17258
DO - 10.1016/j.heliyon.2023.e17258
M3 - Artículo
C2 - 37389052
AN - SCOPUS:85162067462
SN - 2405-8440
VL - 9
JO - Heliyon
JF - Heliyon
IS - 6
M1 - e17258
ER -