Optimization of the Model Predictive Control Parameters using Artificial Bee Colony Algorithm Applied to a Small-Scale Pasteurization Plant

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This paper proposes a model predictive control (MPC) algorithm optimized using the artificial bee colony algorithm (ABC) to control the temperature of the pasteurization product in a small-scale pasteurization plant following a set point trajectory and minimizing power consumption. The proposed algorithm is compared with the MPC tuned by trial and error. The results show that the proposed ABC optimization-based MPC algorithm shows improvements in relation to trajectory tracking and disturbance rejection. A significant reduction in the integral squared error (ISE) of approximately 68.12% and in the settle times (up and down) of 58.90% and 84.40%, respectively, was achieved.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 25th Autumn Meeting on Power, Electronics and Computing, ROPEC 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350336887
DOI
EstadoPublicada - 2023
Evento25th Autumn Meeting on Power, Electronics and Computing, ROPEC 2023 - Ixtapa, Gro., México
Duración: 18 oct. 202320 oct. 2023

Serie de la publicación

NombreProceedings of the 25th Autumn Meeting on Power, Electronics and Computing, ROPEC 2023

Conferencia

Conferencia25th Autumn Meeting on Power, Electronics and Computing, ROPEC 2023
País/TerritorioMéxico
CiudadIxtapa, Gro.
Período18/10/2320/10/23

Huella

Profundice en los temas de investigación de 'Optimization of the Model Predictive Control Parameters using Artificial Bee Colony Algorithm Applied to a Small-Scale Pasteurization Plant'. En conjunto forman una huella única.

Citar esto