Physics Informed Neural Networks and Gaussian Processes-Hamiltonian Monte Carlo to Solve Ordinary Differential Equations

Roberth Chachalo, Jaime Astudillo, Saba Infante, Israel Pineda

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Non-linear systems of differential equations are vital in fields like biology, finance, ecology, and engineering for modeling dynamic systems. This paper explores two advanced function approximation techniques Physics Informed Neural Networks (PINNs) and Gaussian Processes (GPs) combined with Hamiltonian Monte Carlo (HMC) for solving Ordinary Differential Equations (ODEs) that represent complex physical phenomena. The proposed approach integrates PINNs and GP-HMC, demonstrated through two synthetic models (Lotka Volterra and Fitzhugh Nagumo) and a real dataset (COVID-19 SIR model). The results show that the methodology effectively estimates parameters with low Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). For example, in the Lotka-Volterra model, GP-HMC achieved an RMSE of 0.044 and MAE of 0.041 for one state variable, while PINNs yielded an RMSE of 0.106 and MAE of 0.081. These results highlight the robustness of the methodology in accurately reconstructing system states across varying levels of variability.

Idioma originalInglés
Título de la publicación alojadaInformation and Communication Technologies - 12th Ecuadorian Conference, TICEC 2024, Proceedings
EditoresSantiago Berrezueta-Guzman, Rommel Torres, Jorge Luis Zambrano-Martinez, Jorge Herrera-Tapia
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas253-268
Número de páginas16
ISBN (versión impresa)9783031754302
DOI
EstadoPublicada - 2025
Evento12th Ecuadorian Conference on Information and Communication Technologies, TICEC 2024 - Loja, Ecuador
Duración: 16 oct. 202418 oct. 2024

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen2273 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia12th Ecuadorian Conference on Information and Communication Technologies, TICEC 2024
País/TerritorioEcuador
CiudadLoja
Período16/10/2418/10/24

Huella

Profundice en los temas de investigación de 'Physics Informed Neural Networks and Gaussian Processes-Hamiltonian Monte Carlo to Solve Ordinary Differential Equations'. En conjunto forman una huella única.

Citar esto