TY - JOUR
T1 - Physiological and neuromotor changes induced by two different stand-walk-sit work rotations
AU - Garcia, Maria Gabriela
AU - Tapia, Paola
AU - Läubli, Thomas
AU - Martin, Bernard J.
N1 - Publisher Copyright:
© 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - The potential of rotating postures to alleviate the effects of prolonged standing and sitting postures has been advocated to attenuate the accumulation of muscle fatigue, considered a precursor to musculoskeletal disorders. We aimed to evaluate the effects of two posture rotations, both including standing, walking, sitting, on physiological and neuromotor measures. Twenty-two participants followed two posture rotations, with different rest-break distributions, for 5.25 h. Lower-leg muscle twitch force, volume, force control and discomfort perception were evaluated during and after work exposure on two non-consecutive days. Significant changes in all measures indicate a detrimental effect in lower-leg long-lasting muscle fatigue, oedema, performance and discomfort after 5 h for both exposures. However, for both exposures recovery was significant 1 h and 15 h post-workday. Differences between the two rotation schedules were not significant. Hence, stand-walk-sit posture rotation promotes recovery of the tested measures and is likely to better prevent muscle fatigue accumulation. Practitioner summary: Lower-leg muscle twitch force, volume, force control, and discomfort were quantified during and after 5 h of stand-walk-sit work rotations with two different rest-break distributions. Measures revealed similar significant effects of work exposures regardless of rotation; which did not persist post-work. This beneficial recovery contrasts with the standing only situations. Abbreviations: MSDs: musculoskeletal disorders; MTF: muscle twitch force; RMSE: root mean square error; MVC: maximum voluntary contraction; M: mean; SE: standard error.
AB - The potential of rotating postures to alleviate the effects of prolonged standing and sitting postures has been advocated to attenuate the accumulation of muscle fatigue, considered a precursor to musculoskeletal disorders. We aimed to evaluate the effects of two posture rotations, both including standing, walking, sitting, on physiological and neuromotor measures. Twenty-two participants followed two posture rotations, with different rest-break distributions, for 5.25 h. Lower-leg muscle twitch force, volume, force control and discomfort perception were evaluated during and after work exposure on two non-consecutive days. Significant changes in all measures indicate a detrimental effect in lower-leg long-lasting muscle fatigue, oedema, performance and discomfort after 5 h for both exposures. However, for both exposures recovery was significant 1 h and 15 h post-workday. Differences between the two rotation schedules were not significant. Hence, stand-walk-sit posture rotation promotes recovery of the tested measures and is likely to better prevent muscle fatigue accumulation. Practitioner summary: Lower-leg muscle twitch force, volume, force control, and discomfort were quantified during and after 5 h of stand-walk-sit work rotations with two different rest-break distributions. Measures revealed similar significant effects of work exposures regardless of rotation; which did not persist post-work. This beneficial recovery contrasts with the standing only situations. Abbreviations: MSDs: musculoskeletal disorders; MTF: muscle twitch force; RMSE: root mean square error; MVC: maximum voluntary contraction; M: mean; SE: standard error.
KW - Muscle twitch force
KW - discomfort
KW - fatigue
KW - oedema
KW - performance
UR - http://www.scopus.com/inward/record.url?scp=85074338773&partnerID=8YFLogxK
U2 - 10.1080/00140139.2019.1677949
DO - 10.1080/00140139.2019.1677949
M3 - Artículo
C2 - 31594482
AN - SCOPUS:85074338773
SN - 0014-0139
VL - 63
SP - 163
EP - 174
JO - Ergonomics
JF - Ergonomics
IS - 2
ER -