Power plant fault monitoring using Recursive Principal Component Analysis RPCA

Alberto Sánchez, Mauricio Redrobán, Omar Aguirre

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Recursive Principal Components Analysis is explored as a method to identify and classify fault sources in a 12MW steam dual fuel power plant. The algorithm assessment is performed off-line by using data of relevant plant wide-information. A simple contributions matrix based in normalized data is proposed to diagnose plant faults. Results indicate it is possible to detect, classify and possibly even predict sources of plant failure.

Idioma originalInglés
Título de la publicación alojada2016 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2016
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781509037940
DOI
EstadoPublicada - 23 ene. 2017
Evento2016 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2016 - Ixtapa, Guerrero, México
Duración: 9 nov. 201611 nov. 2016

Serie de la publicación

Nombre2016 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2016

Conferencia

Conferencia2016 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2016
País/TerritorioMéxico
CiudadIxtapa, Guerrero
Período9/11/1611/11/16

Huella

Profundice en los temas de investigación de 'Power plant fault monitoring using Recursive Principal Component Analysis RPCA'. En conjunto forman una huella única.

Citar esto