TY - JOUR
T1 - Prediction of aquatic toxicity of benzene derivatives using molecular descriptor from atomic weighted vectors
AU - Martínez-López, Yoan
AU - Barigye, Stephen J.
AU - Martínez-Santiago, Oscar
AU - Marrero-Ponce, Yovani
AU - Green, James
AU - Castillo-Garit, Juan A.
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/12
Y1 - 2017/12
N2 - Several descriptors from atom weighted vectors are used in the prediction of aquatic toxicity of set of organic compounds of 392 benzene derivatives to the protozoo ciliate Tetrahymena pyriformis (log(IGC50)−1). These descriptors are calculated using the MD-LOVIs software and various Aggregation Operators are examined with the aim comparing their performances in predicting aquatic toxicity. Variability analysis is used to quantify the information content of these molecular descriptors by means of an information theory-based algorithm. Multiple Linear Regression with Genetic Algorithms is used to obtain models of the structure–toxicity relationships; the best model shows values of Q2 = 0.830 and R2 = 0.837 using six variables. Our models compare favorably with other previously published models that use the same data set. The obtained results suggest that these descriptors provide an effective alternative for determining aquatic toxicity of benzene derivatives.
AB - Several descriptors from atom weighted vectors are used in the prediction of aquatic toxicity of set of organic compounds of 392 benzene derivatives to the protozoo ciliate Tetrahymena pyriformis (log(IGC50)−1). These descriptors are calculated using the MD-LOVIs software and various Aggregation Operators are examined with the aim comparing their performances in predicting aquatic toxicity. Variability analysis is used to quantify the information content of these molecular descriptors by means of an information theory-based algorithm. Multiple Linear Regression with Genetic Algorithms is used to obtain models of the structure–toxicity relationships; the best model shows values of Q2 = 0.830 and R2 = 0.837 using six variables. Our models compare favorably with other previously published models that use the same data set. The obtained results suggest that these descriptors provide an effective alternative for determining aquatic toxicity of benzene derivatives.
KW - Aggregation operator
KW - Aquatic toxicity
KW - Atom weighted vector
KW - Molecular descriptor
KW - Multiple linear regression
KW - Variability analysis
UR - http://www.scopus.com/inward/record.url?scp=85032333281&partnerID=8YFLogxK
U2 - 10.1016/j.etap.2017.10.006
DO - 10.1016/j.etap.2017.10.006
M3 - Artículo
C2 - 29091819
AN - SCOPUS:85032333281
SN - 1382-6689
VL - 56
SP - 314
EP - 321
JO - Environmental Toxicology and Pharmacology
JF - Environmental Toxicology and Pharmacology
ER -