TY - JOUR
T1 - Projected changes in elevational distribution and flight performance of montane Neotropical hummingbirds in response to climate change
AU - Buermann, Wolfgang
AU - Chaves, Jaime A.
AU - Dudley, Robert
AU - Mcguire, Jimmy A.
AU - Smith, Thomas B.
AU - Altshuler, Douglas L.
PY - 2011/4
Y1 - 2011/4
N2 - The hovering flight of hummingbirds is one of the most energetically demanding forms of animal locomotion and is influenced by both atmospheric oxygen availability and air density. Montane Neotropical hummingbirds are expected to shift altitudinally upwards in response to climate change to track their ancestral climatic regime, which is predicted to influence their flight performance. In this study, we use the climate envelope approach to estimate upward elevational shifts for five Andean hummingbird species under two climate change scenarios. We then use field-based data on hummingbird flight mechanics to estimate the resulting impact of climate change on aerodynamic performance in hovering flight. Our results show that in addition to significant habitat loss and fragmentation, projected upwards elevational shifts vary between 300 and 700m, depending on climate change scenario and original mean elevation of the target species. Biomechanical analysis indicates that such upwards elevational shifts would yield a~2-5° increase in wing stroke amplitude with no substantial effect on wingbeat frequency. Overall, the physiological impact of elevational shifts of <1000m in response to climate change is likely to be small relative to other factors such as habitat loss, changes in floristic composition, and increased interspecific competition.
AB - The hovering flight of hummingbirds is one of the most energetically demanding forms of animal locomotion and is influenced by both atmospheric oxygen availability and air density. Montane Neotropical hummingbirds are expected to shift altitudinally upwards in response to climate change to track their ancestral climatic regime, which is predicted to influence their flight performance. In this study, we use the climate envelope approach to estimate upward elevational shifts for five Andean hummingbird species under two climate change scenarios. We then use field-based data on hummingbird flight mechanics to estimate the resulting impact of climate change on aerodynamic performance in hovering flight. Our results show that in addition to significant habitat loss and fragmentation, projected upwards elevational shifts vary between 300 and 700m, depending on climate change scenario and original mean elevation of the target species. Biomechanical analysis indicates that such upwards elevational shifts would yield a~2-5° increase in wing stroke amplitude with no substantial effect on wingbeat frequency. Overall, the physiological impact of elevational shifts of <1000m in response to climate change is likely to be small relative to other factors such as habitat loss, changes in floristic composition, and increased interspecific competition.
KW - Climate change
KW - Elevational shift
KW - Hummingbird flight kinematics
KW - Wing stroke amplitude
KW - Wingbeat frequency
UR - http://www.scopus.com/inward/record.url?scp=79952052779&partnerID=8YFLogxK
U2 - 10.1111/j.1365-2486.2010.02330.x
DO - 10.1111/j.1365-2486.2010.02330.x
M3 - Artículo
AN - SCOPUS:79952052779
SN - 1354-1013
VL - 17
SP - 1671
EP - 1680
JO - Global Change Biology
JF - Global Change Biology
IS - 4
ER -