Robotic Arm Handling Based on Real-Time Recognition of the Number of Raised Fingers Using Convolutional Neural Networks

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This paper presents a system for operating a robotic arm based on the number of raised fingers detected in a human hand using a camera mounted on the robot. Leveraging advancements in physical human-robot interaction (pHRI), the system utilizes a convolutional neural network (CNN) to interpret hand gestures for intuitive control. Initially, the system uses the MediaPipe Framework to identify 21 landmarks of the hand, which are then used to define the bounding box of the hand. A convolutional neural network (CNN) processes this bounded hand image to determine the number of raised fingers. Implemented using a Jetson Nano, a Logitech Brio 4K webcam, and Python libraries such as OpenCV, I2C tools, and TensorFlow, the model was trained on 30,000 images, achieving a 92.7% accuracy during training and 94% during real-time testing. A voting strategy ensures robust predictions by considering the most frequent result from ten consecutive predictions, mitigating the impact of minor hand movements. The system demonstrates the potential for advanced applications in hand gesture-based robot manipulation and interaction.

Idioma originalInglés
Título de la publicación alojada2024 7th IEEE Biennial Congress of Argentina, ARGENCON 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350365931
DOI
EstadoPublicada - 2024
Evento7th IEEE Biennial Congress of Argentina, ARGENCON 2024 - San Nicolas de los Arroyos, Argentina
Duración: 18 sep. 202420 sep. 2024

Serie de la publicación

Nombre2024 7th IEEE Biennial Congress of Argentina, ARGENCON 2024

Conferencia

Conferencia7th IEEE Biennial Congress of Argentina, ARGENCON 2024
País/TerritorioArgentina
CiudadSan Nicolas de los Arroyos
Período18/09/2420/09/24

Huella

Profundice en los temas de investigación de 'Robotic Arm Handling Based on Real-Time Recognition of the Number of Raised Fingers Using Convolutional Neural Networks'. En conjunto forman una huella única.

Citar esto