Robust Estimation of Shift-Invariant Patterns Exploiting Correntropy

Carlos A. Loza, Jose C. Principe

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva


We propose a novel framework for robust estimation of recurring patterns in time series. Particularly, we utilize correntropy and a shift-invariant adaptation of sparse modeling techniques as the underpinnings of a data-driven scheme where potential outliers, such as spikes, dropouts, high-Amplitude impulsive noise, gaps, and overlaps are managed in a principled manner. The Maximum Correntropy Criterion (MCC) is applied to the estimation paradigms and solved via the Half-Quadratic (HQ) technique, which allows a fast and efficient computation of the optimal projection vectors without adding extra free parameters. We also posit a heuristic regarding the initial set of functions to be estimated; specifically, we restrict the search space to patterns with modulatory activity only. We then implement a robust clustering routine to provide a principled initial seed for the greedy algorithms. This heuristic is proved to alleviate the computational burden that shift-invariant unsupervised learning usually entails. The framework is tested on synthetic time series built from weighted Discrete Cosine Transform (DCT) atoms under four different variants of outliers. In addition, we present preliminary results on winding data that illustrate the clear advantages of the methods.

Idioma originalInglés
Título de la publicación alojada2018 IEEE 3rd Ecuador Technical Chapters Meeting, ETCM 2018
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781538666579
EstadoPublicada - 17 dic. 2018
Evento3rd IEEE Ecuador Technical Chapters Meeting, ETCM 2018 - Cuenca, Ecuador
Duración: 15 oct. 201819 oct. 2018

Serie de la publicación

Nombre2018 IEEE 3rd Ecuador Technical Chapters Meeting, ETCM 2018


Conferencia3rd IEEE Ecuador Technical Chapters Meeting, ETCM 2018


Profundice en los temas de investigación de 'Robust Estimation of Shift-Invariant Patterns Exploiting Correntropy'. En conjunto forman una huella única.

Citar esto