Robust Variants of Dictionary Learning Exploiting M-Estimators

Carlos A. Loza

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

We propose a robust alternative the well known dictionary learning technique K-SVD. Specifically, we exploit the theory behind M-Estimators to incorporate robustness into the sparse coding stage of K-SVD, and hence, decrease the estimation bias that might be introduced when outliers are present. Five different M-Estimators are introduced alongside their optimal hyperparameters in order to avoid parameter tuning by the user. In this way, the proposed framework has the same number of free parameters as K-SVD with the added feature of robustness and improved performance in non-Gaussian environments. We thoroughly demonstrate the superiority of the proposed algorithms via recovery of generating dictionaries for synthetic data and image denoising under two types of non-homogenous noise - salt and pepper noise, and impulsive noise.

Idioma originalInglés
Título de la publicación alojadaIEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728131856
DOI
EstadoPublicada - nov. 2019
Evento2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019 - Valparaiso, Chile
Duración: 13 nov. 201927 nov. 2019

Serie de la publicación

NombreIEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019

Conferencia

Conferencia2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019
País/TerritorioChile
CiudadValparaiso
Período13/11/1927/11/19

Huella

Profundice en los temas de investigación de 'Robust Variants of Dictionary Learning Exploiting M-Estimators'. En conjunto forman una huella única.

Citar esto