TY - JOUR
T1 - Salicylate-mediated suppression of jasmonate-responsive gene expression in arabidopsis is targeted downstream of the jasmonate biosynthesis pathway
AU - Leon-Reyes, Antonio
AU - Van der Does, Dieuwertje
AU - De Lange, Elvira S.
AU - Delker, Carolin
AU - Wasternack, Claus
AU - Van Wees, Saskia C.M.
AU - Ritsema, Tita
AU - Pieterse, Corné M.J.
N1 - Funding Information:
Acknowledgments We thank Ruth Joosten, Hans Van Pelt and Ientse Van der Sluis (Plant–Microbe Interactions, Utrecht University) for technical assistance. We thank the following colleagues for kindly sending Arabidopsis seeds: Prof. Keller and Dr. Ringli (University of Zürich, Switzerland; aos/dde2-2), Prof. Browse (Washington State University, Pullman, USA; opr3) and Dr. Brinder (University of Wisconsin, Madison, USA; aim1). This work was supported by VICI grant no. 865.04.002 of the Earth and Life Sciences Foundation, which is subsidized by the Netherlands Organization of Scientific Research.
PY - 2010
Y1 - 2010
N2 - Jasmonates (JAs) and salicylic acid (SA) are plant hormones that play pivotal roles in the regulation of induced defenses against microbial pathogens and insect herbivores. Their signaling pathways cross-communicate providing the plant with a regulatory potential to finely tune its defense response to the attacker(s) encountered. In Arabidopsis thaliana, SA strongly antagonizes the jasmonic acid (JA) signaling pathway, resulting in the downregulation of a large set of JA-responsive genes, including the marker genes PDF1.2 and VSP2. Induction of JA-responsive marker gene expression by different JA derivatives was equally sensitive to SA-mediated suppression. Activation of genes encoding key enzymes in the JA biosynthesis pathway, such as LOX2, AOS, AOC2, and OPR3 was also repressed by SA, suggesting that the JA biosynthesis path-way may be a target for SA-mediated antagonism. To test this, we made use of the mutant aos/dde2, which is completely blocked in its ability to produce JAs because of a mutation in the ALLENE OXIDE SYNTHASE gene. Mutant aos/dde2 plants did not express the JA-responsive marker genes PDF1.2 or VSP2 in response to infection with the necrotrophic fungus Alternaria brassicicola or the herbivorous insect Pieris rapae. Bypassing JA biosynthesis by exogenous application of methyl jasmonate (MeJA) rescued this JA-responsive phenotype in aos/dde2. Application of SA suppressed MeJA-induced PDF1.2 expression to the same level in the aos/dde2 mutant as in wild-type Col-0 plants, indicating that SA-mediated suppression of JA- responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway.
AB - Jasmonates (JAs) and salicylic acid (SA) are plant hormones that play pivotal roles in the regulation of induced defenses against microbial pathogens and insect herbivores. Their signaling pathways cross-communicate providing the plant with a regulatory potential to finely tune its defense response to the attacker(s) encountered. In Arabidopsis thaliana, SA strongly antagonizes the jasmonic acid (JA) signaling pathway, resulting in the downregulation of a large set of JA-responsive genes, including the marker genes PDF1.2 and VSP2. Induction of JA-responsive marker gene expression by different JA derivatives was equally sensitive to SA-mediated suppression. Activation of genes encoding key enzymes in the JA biosynthesis pathway, such as LOX2, AOS, AOC2, and OPR3 was also repressed by SA, suggesting that the JA biosynthesis path-way may be a target for SA-mediated antagonism. To test this, we made use of the mutant aos/dde2, which is completely blocked in its ability to produce JAs because of a mutation in the ALLENE OXIDE SYNTHASE gene. Mutant aos/dde2 plants did not express the JA-responsive marker genes PDF1.2 or VSP2 in response to infection with the necrotrophic fungus Alternaria brassicicola or the herbivorous insect Pieris rapae. Bypassing JA biosynthesis by exogenous application of methyl jasmonate (MeJA) rescued this JA-responsive phenotype in aos/dde2. Application of SA suppressed MeJA-induced PDF1.2 expression to the same level in the aos/dde2 mutant as in wild-type Col-0 plants, indicating that SA-mediated suppression of JA- responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway.
KW - Hormone crosstalk
KW - Jasmonic acid
KW - Plant defense
KW - Salicylic acid
UR - http://www.scopus.com/inward/record.url?scp=78650305087&partnerID=8YFLogxK
U2 - 10.1007/s00425-010-1265-z
DO - 10.1007/s00425-010-1265-z
M3 - Artículo
C2 - 20839007
AN - SCOPUS:78650305087
SN - 0032-0935
VL - 232
SP - 1423
EP - 1432
JO - Planta
JF - Planta
IS - 6
ER -