TY - JOUR
T1 - Salmonella isolated from street foods and environment of an urban park
T2 - A whole genome sequencing approach
AU - Vinueza-Burgos, Christian
AU - Medina-Santana, José
AU - Ishida, Maria
AU - Sauders, Brian
AU - Deiulio, Gregory
AU - Dickey, Alyssa
AU - Endara, Pablo
AU - Terán, Rommy
N1 - Publisher Copyright:
© 2025 Public Library of Science. All rights reserved.
PY - 2025/4
Y1 - 2025/4
N2 - Salmonella is one of the most important foodborne pathogens worldwide. Therefore, this study was conducted to understand the importance of this microorganism in street food and the environment of an urban park in Quito, Ecuador. This research included phenotypic characterization and whole genome sequencing (WGS) analysis of isolates from different food matrices and fecal samples of dogs and pigeons. Salmonella was found in 10% (18/180) of the food samples, 3% (3/100) of the dog stool samples, and 5% (5/100) of the pigeon stool samples. These results also showed that meals containing any sauce or eggs were associated with a high probability of Salmonella isolation, regardless of other ingredients. All Salmonella isolates from food were identified as Salmonella enterica serovar Typhimurium (S. Typhimurium) while isolates from animal feces belonged to Salmonella enterica serovar Infantis (S. Infantis) and S. Typhimurium. WGS analysis showed that all S. Typhimurium strains belonged to ST19 and S. Infantis to ST32 according to the Multi-Locus Sequence Type (MLST) scheme. These strains were not related to Salmonella genomes of other origins when a Single Nucleotide Polymorphism (SNP) tree analysis was carried out. Antimicrobial resistance genes, such as blaCTX-M-65, were predominantly linked to the pESI-like plasmid found in S. Infantis. These results show the importance of urban fauna as a reservoir of S. Infantis and the impact these animals could have in terms of public health.
AB - Salmonella is one of the most important foodborne pathogens worldwide. Therefore, this study was conducted to understand the importance of this microorganism in street food and the environment of an urban park in Quito, Ecuador. This research included phenotypic characterization and whole genome sequencing (WGS) analysis of isolates from different food matrices and fecal samples of dogs and pigeons. Salmonella was found in 10% (18/180) of the food samples, 3% (3/100) of the dog stool samples, and 5% (5/100) of the pigeon stool samples. These results also showed that meals containing any sauce or eggs were associated with a high probability of Salmonella isolation, regardless of other ingredients. All Salmonella isolates from food were identified as Salmonella enterica serovar Typhimurium (S. Typhimurium) while isolates from animal feces belonged to Salmonella enterica serovar Infantis (S. Infantis) and S. Typhimurium. WGS analysis showed that all S. Typhimurium strains belonged to ST19 and S. Infantis to ST32 according to the Multi-Locus Sequence Type (MLST) scheme. These strains were not related to Salmonella genomes of other origins when a Single Nucleotide Polymorphism (SNP) tree analysis was carried out. Antimicrobial resistance genes, such as blaCTX-M-65, were predominantly linked to the pESI-like plasmid found in S. Infantis. These results show the importance of urban fauna as a reservoir of S. Infantis and the impact these animals could have in terms of public health.
UR - http://www.scopus.com/inward/record.url?scp=105002168456&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0320735
DO - 10.1371/journal.pone.0320735
M3 - Artículo
AN - SCOPUS:105002168456
SN - 1932-6203
VL - 20
JO - PLoS ONE
JF - PLoS ONE
IS - 4 April
M1 - e0320735
ER -