Segmenting retinal vascular net from retinopathy of prematurity images using convolutional neural network

Monserrate Intriago-Pazmiño, Julio Ibarra-Fiallo, Raúl Alonso-Calvo, José Crespo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

In this paper, we describe the experimentation with a convolutional neural network for segmenting retinal net from pathological fundus images of preterm born children. Segmenting retinal net from pathological fundus images is a fundamental task to aid computer diagnosis. We used U-net architecture for training and testing. Testing with ROPFI dataset, we obtained an area under the receiver operating curve equal to 0.9180; when average sensitivity is equal to 0.700, the average specificity is equal to 0.9710. This performance is higher than prior works using a similar dataset.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2nd International Conference on Data Science, E-Learning and Information Systems, DATA 2019
EditorialAssociation for Computing Machinery
ISBN (versión digital)9781450372848
DOI
EstadoPublicada - 2 dic. 2019
Evento2nd International Conference on Data Science, E-Learning and Information Systems, DATA 2019 - Dubai, Emiratos Árabes Unidos
Duración: 2 dic. 20195 dic. 2019

Serie de la publicación

NombreACM International Conference Proceeding Series

Conferencia

Conferencia2nd International Conference on Data Science, E-Learning and Information Systems, DATA 2019
País/TerritorioEmiratos Árabes Unidos
CiudadDubai
Período2/12/195/12/19

Huella

Profundice en los temas de investigación de 'Segmenting retinal vascular net from retinopathy of prematurity images using convolutional neural network'. En conjunto forman una huella única.

Citar esto