Seismic Event Classification Using Spectrograms and Deep Neural Nets

Aaron Salazar, Rodrigo Arroyo, Noel Pérez, Diego S. Benítez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

In this work, we proposed a new method to classify long-period and volcano-tectonic spectrogram images using eight different deep learning architectures. The developed method used three deep convolutional neural networks named DCNN1, DCNN2, and DCNN3, three deep convolutional neural networks combined with deep recurrent neural networks named DCNN-RNN1, DCNN-RNN2, and DCNN-RNN3, and two autoencoder neural networks named AE1 and AE2, to maximize the area under the curve of the receiver operating characteristic scores on a dataset of volcano seismic spectrogram images. The three deep recurrent neural network-based models reached the worst results due to the overfitting produced by the small number of samples in the training sets. The DCNN1 overcame the remaining models by obtaining an area under the curve of the receiver operating characteristic and accuracy scores of 0.98 and 95 %, respectively. Although these values were not the highest values per metric, they did not represent statistical differences against other results obtained by more algorithmically complex models. The proposed DCNN1 model showed similar or superior performance compared to the majority of the state of the art methods in terms of accuracy. Therefore it can be considered a successful scheme to classify LP and VT seismic events based on their spectrogram images.

Idioma originalInglés
Título de la publicación alojadaApplications of Computational Intelligence - 3rd IEEE Colombian Conference, ColCACI 2020, Revised Selected Papers
EditoresAlvaro David Orjuela-Cañón, Jesus Lopez, Julián David Arias-Londoño, Juan Carlos Figueroa-García
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas16-30
Número de páginas15
ISBN (versión impresa)9783030697730
DOI
EstadoPublicada - 2021
Evento3rd IEEE Colombian Conference on Applications of Computational Intelligence, IEEE ColCACI 2020 - Virtual, Online
Duración: 7 ago. 20208 ago. 2020

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1346
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia3rd IEEE Colombian Conference on Applications of Computational Intelligence, IEEE ColCACI 2020
CiudadVirtual, Online
Período7/08/208/08/20

Huella

Profundice en los temas de investigación de 'Seismic Event Classification Using Spectrograms and Deep Neural Nets'. En conjunto forman una huella única.

Citar esto