TY - JOUR
T1 - Simulating PM2.5 Concentrations during New Year in Cuenca, Ecuador
T2 - Effects of Advancing the Time of Burning Activities
AU - Parra, René
AU - Saud, Claudia
AU - Espinoza, Claudia
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/5
Y1 - 2022/5
N2 - Fine particulate matter (PM2.5) is dangerous to human health. At midnight on 31 December, in Ecuadorian cities, people burn puppets and fireworks, emitting high amounts of PM2.5. On 1 January 2022, concentrations between 27.3 and 40.6 µg m−3 (maximum mean over 24 h) were measured in Cuenca, an Andean city located in southern Ecuador; these are higher than 15 µg m−3, the current World Health Organization guideline. We estimated the corresponding PM2.5 emissions and used them as an input to the Weather Research and Forecasting with Chemistry (WRF-Chem 3.2) model to simulate the change in PM2.5 concentrations, assuming these emissions started at 18:00 LT or 21:00 LT on 31 December 2021. On average, PM2.5 concentrations decreased by 51.4% and 33.2%. Similar modeling exercises were completed for 2016 to 2021, providing mean decreases between 21.4% and 61.0% if emissions started at 18:00 LT. Lower mean reductions, between 2.3% and 40.7%, or even local increases, were computed for emissions beginning at 21:00 LT. Reductions occurred through better atmospheric conditions to disperse PM2.5 compared to midnight. Advancing the burning time can help reduce the health effects of PM2.5 emissions on 31 December.
AB - Fine particulate matter (PM2.5) is dangerous to human health. At midnight on 31 December, in Ecuadorian cities, people burn puppets and fireworks, emitting high amounts of PM2.5. On 1 January 2022, concentrations between 27.3 and 40.6 µg m−3 (maximum mean over 24 h) were measured in Cuenca, an Andean city located in southern Ecuador; these are higher than 15 µg m−3, the current World Health Organization guideline. We estimated the corresponding PM2.5 emissions and used them as an input to the Weather Research and Forecasting with Chemistry (WRF-Chem 3.2) model to simulate the change in PM2.5 concentrations, assuming these emissions started at 18:00 LT or 21:00 LT on 31 December 2021. On average, PM2.5 concentrations decreased by 51.4% and 33.2%. Similar modeling exercises were completed for 2016 to 2021, providing mean decreases between 21.4% and 61.0% if emissions started at 18:00 LT. Lower mean reductions, between 2.3% and 40.7%, or even local increases, were computed for emissions beginning at 21:00 LT. Reductions occurred through better atmospheric conditions to disperse PM2.5 compared to midnight. Advancing the burning time can help reduce the health effects of PM2.5 emissions on 31 December.
KW - WRF-Chem
KW - air quality modeling
KW - atmospheric stability
KW - fine particles
KW - planetary boundary layer
UR - http://www.scopus.com/inward/record.url?scp=85130925859&partnerID=8YFLogxK
U2 - 10.3390/toxics10050264
DO - 10.3390/toxics10050264
M3 - Artículo
AN - SCOPUS:85130925859
SN - 2305-6304
VL - 10
JO - Toxics
JF - Toxics
IS - 5
M1 - 264
ER -