TY - JOUR
T1 - Size-controlled PtNi nanoparticles as highly efficient catalyst for hydrodechlorination reactions
AU - Munoz, Macarena
AU - Ponce, Sebastian
AU - Zhang, Gui Rong
AU - Etzold, Bastian J.M.
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/9/5
Y1 - 2016/9/5
N2 - The application of size-controlled PtNi nanoparticles (NPs) as catalyst on the aqueous-phase hydrodechlorination (HDC) of 4-chlorophenol (4-CP) under ambient conditions (25 °C, 1 atm) has been investigated. NPs were synthesized as a co-reduction of both metals following a solvothermal method which allowed a proper control of the PtNi alloyed NP size in the range of 4.4-12.0 nm. To make the active sites of the nanoalloy accessible, the stabilizer poly(N-vinyl-2-pyrrolidone) was removed by washing of the NPs with H2O2/H2SO4. Evaluating the NP structure/composition influence on the activity, a clear synergic effect between Pt and Ni was found. In this sense, complete conversion of 4-CP was achieved in 1 h reaction time with the bimetallic NPs whereas only 70% was reached with the monometallic Pt counterpart (NP size = 12 nm, [Pt] = 80 mg L-1, [4-CP]0 = 78 μmol L-1). That effect could be related to the higher resistance of PtNi nanoalloy against chlorine poisoning compared to the monometallic Pt. In fact, PtNi NPs showed a remarkable stability and negligible deactivation even after storing the catalyst one month in the reaction mixture, whereas for the monometallic Pt fully deactivation resulted. The structure-sensitivity of HDC with PtNi nanocatalysts was finally confirmed as the catalytic performance was clearly dependent on the size. A volcano plot like behaviour was obtained, being 5.5 nm the optimum size. PtNi-5.5 led to the complete conversion of 4-CP in 15 min at a HDC rate of 3.12 L min-1 gPt-1.
AB - The application of size-controlled PtNi nanoparticles (NPs) as catalyst on the aqueous-phase hydrodechlorination (HDC) of 4-chlorophenol (4-CP) under ambient conditions (25 °C, 1 atm) has been investigated. NPs were synthesized as a co-reduction of both metals following a solvothermal method which allowed a proper control of the PtNi alloyed NP size in the range of 4.4-12.0 nm. To make the active sites of the nanoalloy accessible, the stabilizer poly(N-vinyl-2-pyrrolidone) was removed by washing of the NPs with H2O2/H2SO4. Evaluating the NP structure/composition influence on the activity, a clear synergic effect between Pt and Ni was found. In this sense, complete conversion of 4-CP was achieved in 1 h reaction time with the bimetallic NPs whereas only 70% was reached with the monometallic Pt counterpart (NP size = 12 nm, [Pt] = 80 mg L-1, [4-CP]0 = 78 μmol L-1). That effect could be related to the higher resistance of PtNi nanoalloy against chlorine poisoning compared to the monometallic Pt. In fact, PtNi NPs showed a remarkable stability and negligible deactivation even after storing the catalyst one month in the reaction mixture, whereas for the monometallic Pt fully deactivation resulted. The structure-sensitivity of HDC with PtNi nanocatalysts was finally confirmed as the catalytic performance was clearly dependent on the size. A volcano plot like behaviour was obtained, being 5.5 nm the optimum size. PtNi-5.5 led to the complete conversion of 4-CP in 15 min at a HDC rate of 3.12 L min-1 gPt-1.
KW - 4-Chlorophenol
KW - Hydrodechlorination
KW - Magnetic catalyst
KW - PVP
KW - Particle size
KW - PtNi nanoparticles
UR - http://www.scopus.com/inward/record.url?scp=84961821470&partnerID=8YFLogxK
U2 - 10.1016/j.apcatb.2016.03.038
DO - 10.1016/j.apcatb.2016.03.038
M3 - Artículo
AN - SCOPUS:84961821470
SN - 0926-3373
VL - 192
SP - 1
EP - 7
JO - Applied Catalysis B: Environmental
JF - Applied Catalysis B: Environmental
ER -