Spectral problem for a two-component nonlinear Schrödinger equation in 2+1 dimensions: Singular manifold method and Lie point symmetries

P. Albares, J. M. Conde, P. G. Estévez

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

An integrable two-component nonlinear Schrödinger equation in 2+1 dimensions is presented. The singular manifold method is applied in order to obtain a three-component Lax pair. The Lie point symmetries of this Lax pair are calculated in terms of nine arbitrary functions and one arbitrary constant that yield a non-trivial infinite-dimensional Lie algebra. The main non-trivial similarity reductions associated to these symmetries are identified. The spectral parameter of the reduced spectral problem appears as a consequence of one of the symmetries.

Idioma originalInglés
Páginas (desde-hasta)585-594
Número de páginas10
PublicaciónApplied Mathematics and Computation
Volumen355
DOI
EstadoPublicada - 15 ago. 2019

Huella

Profundice en los temas de investigación de 'Spectral problem for a two-component nonlinear Schrödinger equation in 2+1 dimensions: Singular manifold method and Lie point symmetries'. En conjunto forman una huella única.

Citar esto