Subscriber Location in 5G mmWave Networks - Machine Learning RF Pattern Matching

Jativa E. Rene, Anthony Salazar, Katty Beltran, Oliver Caisaluisa

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

A realistic simulated 5G DM-MIMO wireless network operating at 28 GHz mmWaves has been deployed using Open Street Maps and Matlab® over the campus of Universidad San Francisco de Quito (USFQ). Received Signal Strength fingerprints have been collected at Base Station antenna array, and the K-Nearest Neighbors method has been used to perform the match between the received RF patterns and the stored fingerprints. Three different procedures were tested and their results were compared, exhibiting very good outcomes in all the cases.

Idioma originalInglés
Título de la publicación alojada2022 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2022
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665458924
DOI
EstadoPublicada - 2022
Evento2022 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2022 - Ixtapa, México
Duración: 9 nov. 202211 nov. 2022

Serie de la publicación

Nombre2022 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2022

Conferencia

Conferencia2022 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2022
País/TerritorioMéxico
CiudadIxtapa
Período9/11/2211/11/22

Huella

Profundice en los temas de investigación de 'Subscriber Location in 5G mmWave Networks - Machine Learning RF Pattern Matching'. En conjunto forman una huella única.

Citar esto