Super antimagic total labeling of graphs

Kiki Ariyanti Sugeng, Mirka Miller, Martin Bača

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

Let G = (V, E) be a simple, finite and undirected graph with v vertices and e edges, A graph labeling is a mapping from elements of a graph to a set of numbers (usually positive integers). If the domain of the mapping is the set of vertices (or edges) then the labeling is called vertex-labeling (or edge-labeling). If the domain of the mapping is the set of vertices and edges then the labeling is called total labeling. The sum of all labels associated with a graph element is called the weight of the element. If the weights of vertices (or the weights of edges) form an arithmetic progression starting at a and with difference d, then the labeling is called (a, d)-vertex-antimagic (or (a, d)-edge-antimagic). Such a labeling is called v-super (or e-super) if the smallest labels appear on the vertices (or edges). In this paper we present new results for v-super vertex-antimagic total and e-super edge-antimagic total labeling.

Idioma originalInglés
Páginas (desde-hasta)161-171
Número de páginas11
PublicaciónUtilitas Mathematica
Volumen76
EstadoPublicada - jul. 2008
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Super antimagic total labeling of graphs'. En conjunto forman una huella única.

Citar esto