Super-vertex-antimagic total labelings of disconnected graphs

Gohar Ali, Martin Bača, Yuqing Lin, Andrea Semaničová-Feňovčíková

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

11 Citas (Scopus)


Let G = (V, E) be a finite, simple and non-empty (p, q)-graph of order p and size q. An (a, d)-vertex-antimagic total labeling is a bijection f from V (G) ∪ E (G) onto the set of consecutive integers 1, 2, ..., p + q, such that the vertex-weights form an arithmetic progression with the initial term a and the common difference d, where the vertex-weight of x is the sum of values f (x y) assigned to all edges x y incident to vertex x together with the value assigned to x itself, i.e. f (x). Such a labeling is called super if the smallest possible labels appear on the vertices. In this paper, we will study the properties of such labelings and examine their existence for disconnected graphs.

Idioma originalInglés
Páginas (desde-hasta)6048-6054
Número de páginas7
PublicaciónDiscrete Mathematics
EstadoPublicada - 28 oct. 2009
Publicado de forma externa


Profundice en los temas de investigación de 'Super-vertex-antimagic total labelings of disconnected graphs'. En conjunto forman una huella única.

Citar esto