Symmetry Reduction and Soliton-Like Solutions for the Generalized Korteweg-De Vries Equation

D. Blázquez-Sanz, J. M. Conde Martín

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We analyze the gKdV equation, a generalized version of Korteweg-de Vries with an arbitrary function f(u). In general, for a function f(u) the Lie algebra of symmetries of gKdV is the 2-dimensional Lie algebra of translations of the plane xt. This implies the existence of plane wave solutions. Indeed, for some specific values of f(u) the equation gKdV admits a Lie algebra of symmetries of dimension grater than 2. We compute the similarity reductions corresponding to these exceptional symmetries. We prove that the gKdV equation has soliton-like solutions under some general assumptions, and we find a closed formula for the plane wave solutions, that are of hyperbolic secant type.

Idioma originalInglés
Páginas (desde-hasta)1305-1314
Número de páginas10
PublicaciónLobachevskii Journal of Mathematics
Volumen39
N.º9
DOI
EstadoPublicada - 1 nov. 2018

Huella

Profundice en los temas de investigación de 'Symmetry Reduction and Soliton-Like Solutions for the Generalized Korteweg-De Vries Equation'. En conjunto forman una huella única.

Citar esto