Table Detection for Improving Accessibility of Digital Documents using a Deep Learning Approach

Byron Acuna, Luiz Cćsar Martini, Lucas L. Motta, Julio Larco, Felipe Grijalva

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Assistive technologies play an important role in improving the quality of life of people with disabilities. In this work, we developed a system for the retrieval of table information from digital documents for use in screen readers used by visually impaired people. The proposed methodology takes advantage of computer vision techniques with a deep learning approach to make documents accessible instead of the classical rule-based programming approach. We explained in detail the methodology that we used and how to objectively evaluate the approach through entropy, information gain, and purity metrics. The results show that our proposed methodology can be used to reduce the uncertainty experienced by visually impaired people when listening to the contents of tables in digital documents through screen readers. Our table information retrieval system presents two improvements compared with traditional approaches of tagging text-based portable document format (PDF) files. First, our approach does not require supervision by sighted people. Second, our system is capable of working with image-based as well as text-based PDFs.

Idioma originalInglés
Título de la publicación alojada2019 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2019
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728156668
DOI
EstadoPublicada - nov. 2019
Publicado de forma externa
Evento6th IEEE Latin American Conference on Computational Intelligence, LA-CCI 2019 - Guayaquil, Ecuador
Duración: 11 nov. 201915 nov. 2019

Serie de la publicación

Nombre2019 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2019

Conferencia

Conferencia6th IEEE Latin American Conference on Computational Intelligence, LA-CCI 2019
País/TerritorioEcuador
CiudadGuayaquil
Período11/11/1915/11/19

Huella

Profundice en los temas de investigación de 'Table Detection for Improving Accessibility of Digital Documents using a Deep Learning Approach'. En conjunto forman una huella única.

Citar esto