The Penrose-Rindler Equation

Pedro Bargueño, Ernesto Contreras

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva


When applying the GHP calculus to spherically symmetric spacetimes (see the second part of the book), we have encountered several times that one specific commutator is extremely useful. Remembering that commutators of covariant derivatives give place to curvature, one is tempted to somehow assign to [ ð, ð] the (intrinsic) Gaussian curvature of any spacelike surface (remember that ð and ð are GHP-covariant derivatives in the directions of ma and m¯ a ; i.e., they should describe the intrinsic curvature of, let us say, the spacelike sector of the geometry. Although equivalent assertions relating with the intrinsic curvature of a timelike surface can be stated, here we will not go deep along this line). In fact, this is exactly what occurs, as the following proposition Penrose et al.

Idioma originalInglés
Título de la publicación alojadaSpringerBriefs in Physics
EditorialSpringer VS
Número de páginas2
EstadoPublicada - 27 sep. 2023

Serie de la publicación

NombreSpringerBriefs in Physics
VolumenPart F1469
ISSN (versión impresa)2191-5423
ISSN (versión digital)2191-5431


Profundice en los temas de investigación de 'The Penrose-Rindler Equation'. En conjunto forman una huella única.

Citar esto