TY - JOUR
T1 - Thermochemical Analysis of a Packed-Bed Reactor Using Finite Elements with FlexPDE and COMSOL Multiphysics
AU - Taco-Vasquez, Sebastian
AU - Ron, César A.
AU - Murillo, Herman A.
AU - Chico, Andrés
AU - Arauz, Paul G.
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/6
Y1 - 2022/6
N2 - This work presents the thermochemical analysis of a packed-bed reactor via multi-dimensional CFD modeling using FlexPDE and COMSOL Multiphysics. The temperature, concentration, and reaction rate profiles for methane production following the Fischer–Tropsch (F-T) synthesis were studied. To this end, stationary and dynamic differential equations for mass and heat transfer were solved via the finite element technique. The transport equations for 1-D and 2-D models using FlexPDE consider dispersion models, where the fluid and the catalyst can be treated as either homogeneous or heterogenous systems depending on the gradient extents. On the other hand, the 3-D model obtained in COMSOL deems the transport equations incorporated in the Porous Media module. The aim was to compare the FlexPDE and COMSOL models, and to validate them with experimental data from literature. As a result, all models were in good agreement with experimental data, especially for the 2-D and 3-D dynamic models. In terms of kinetics, the predicted reaction rate profiles from the COMSOL model and the 2-D dynamic model followed the temperature trend, thus reflecting the temperature dependence of the reaction. Based on these findings, it was demonstrated that applying different approaches for the CFD modeling of F-T processes conducts reliable results.
AB - This work presents the thermochemical analysis of a packed-bed reactor via multi-dimensional CFD modeling using FlexPDE and COMSOL Multiphysics. The temperature, concentration, and reaction rate profiles for methane production following the Fischer–Tropsch (F-T) synthesis were studied. To this end, stationary and dynamic differential equations for mass and heat transfer were solved via the finite element technique. The transport equations for 1-D and 2-D models using FlexPDE consider dispersion models, where the fluid and the catalyst can be treated as either homogeneous or heterogenous systems depending on the gradient extents. On the other hand, the 3-D model obtained in COMSOL deems the transport equations incorporated in the Porous Media module. The aim was to compare the FlexPDE and COMSOL models, and to validate them with experimental data from literature. As a result, all models were in good agreement with experimental data, especially for the 2-D and 3-D dynamic models. In terms of kinetics, the predicted reaction rate profiles from the COMSOL model and the 2-D dynamic model followed the temperature trend, thus reflecting the temperature dependence of the reaction. Based on these findings, it was demonstrated that applying different approaches for the CFD modeling of F-T processes conducts reliable results.
KW - Fischer-Tropsch synthesis
KW - heat transfer
KW - kinetics
KW - multi-dimensional CFD modeling
KW - reactor modeling
KW - solid catalysts
UR - http://www.scopus.com/inward/record.url?scp=85132265785&partnerID=8YFLogxK
U2 - 10.3390/pr10061144
DO - 10.3390/pr10061144
M3 - Artículo
AN - SCOPUS:85132265785
SN - 2227-9717
VL - 10
JO - Processes
JF - Processes
IS - 6
M1 - 1144
ER -