Threefold way to black hole entropy

Pedro Bargueño, Ernesto Contreras

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

In this work we propose a correspondence between black hole entropy and a topological quantity defined for projective spaces based on the real, complex, and quaternion numbers. After interpreting Weinstein's integer as the normalized volume of the quantum phase space, whose logarithm gives place to the area law (in the real case) and to logarithmic corrections with -12 and -32 coefficients (in the complex and quaternionic cases, respectively), the exact Bekenstein-Hawking entropy is obtained when certain equally spaced spectrum for the event horizon area is imposed. Even more, the minimal area(s) which emerge from our model, are of the form 4logk, kϵ{2,4,16}, in complete agreement with previous works. Finally, the role played by global (complex and quaternionic) phases in different descriptions of black hole entropy is clarified.

Idioma originalInglés
Número de artículo066013
PublicaciónPhysical Review D
Volumen107
N.º6
DOI
EstadoPublicada - 15 mar. 2023

Huella

Profundice en los temas de investigación de 'Threefold way to black hole entropy'. En conjunto forman una huella única.

Citar esto